Функціональна залежність
Функціональна залежність | |
Стаття у Вікіпедії |
Функціональна залежність — концепція, що лежить в основі багатьох питань, пов'язаних з реляційними базами даних, включаючи, зокрема, їхнє проєктування. Математично являє собою бінарне відношення між множинами атрибутів даного відношення і є, по суті, зв'язком типу «один-до-багатьох». Функціональна залежність забезпечує основу для наукового підходу до розв'язання деяких проблем, оскільки володіє багатим набором цікавих формальних властивостей.
Цитати
[ред.]Найважливіше, основоположне поняття математичного аналізу — поняття функціональної залежності, в якому, як у зародку, вже закладено всю ідею опанування явищ природи і процесів техніки за допомогою математичного аналізу. |
|||||
— О. Я. Хінчин[1] |
Жодне інше поняття не відбиває явищ реальної дійсності з такою безпосередністю і конкретністю, як поняття функціональної залежності, в якій втілено і рухомість, і динамічність реального світу, і взаємну обумовленість реальних величин… Це поняття, як жодне інше, втілює в собі діалектичні риси сучасного математичного мислення, саме воно привчає мислити величини в їхній живій мінливості, а не у штучно препарованій нерухомості; в їхньому взаємозв'язку та обумовленості, а не у штучному відриві їх одне від одного. |
|||||
— О. Я. Хінчин[1] |
Примітки
[ред.]- ↑ а б Математика в афоризмах, 1974, с. 226
Джерела
[ред.]Математика в афоризмах, цитатах і висловлюваннях / Н. О. Вірченко. — Київ: Вища школа, 1974. — 272 с.